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Durum wheat (Triticum Durum L.) is used by semolina millers and producers of pasta products 

and couscous worldwide. Approximately 100 million bushels are grown in the United States and 

1.2 billion bushels are produced worldwide. Vitreousness of durum wheat is a measure of its 

quality and is related to the protein content. Nonvitreous (starchy) kernels are opaque and softer, 

and result in decreased yield of coarse semolina (Dexter et al 1988). In comparison, vitreous 

kernels appear hard, glassy and translucent, and have superior cooking quality and pasta color, 

along with coarser granulation and higher protein content. Thus, the vitreousness of durum wheat 

kernels is an important selection criterion in grain grading. Currently, the vitreousness of durum 

wheat kernels is determined by visual inspection. This method is subjective and tedious and can 

result in variation between inspectors. An objective grading and classification system would 

reduce inspector subjectivity and labor and benefit producers, grain handlers, wheat millers, and 

processors (Dexter and Marchylo, 2000). 

 

In recent years, optical, mechanical, electrical, and statistical techniques have been applied to 

rapid grain grading and classification. Delwiche et al. (1995), using near-infrared spectroscopy 

(NIRS) with an artificial neural network (ANN), identified hard red winter and hard red spring 

wheat classes with accuracies of 95%-98%. Steenhoek et al. (2001) developed a computer vision 

system to evaluate blue-eye mold and germ damage in corn grading. An ANN was used in the 

system to achieve classifications with accuracies of 92% and 93% for sound and damaged 
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categories, respectively. A single-kernel characterization system (SKCS 4100, Perten 

Instruments, Springfield, IL), which determines moisture content, weight, diameter, and hardness 

of individual kernels, was developed by Martin et al. (1993). Sissons et al. (2000) used the SKCS 

4100 to predict kernel vitreousness and semolina mill yield. Dowell (2000) reported perfectly 

matched results of single kernel NIR spectroscopy with inspector classifications of obviously 

vitreous or nonvitreous durum wheat kernels.  

 

The GrainCheck 310 (FOSS Tecator, Höganäs, Sweden)1 is an image processing and ANN based 

instrument for assessing grain quality using color and shape information. This technology can 

provide real-time wheat quality inspection for every shipment of grain between producers, 

receiving stations, mills, and breweries (Svensson et al., 1996). It can replace tedious visual 

inspections of purity, color, and size characteristics and improve grading consistency. Since the 

GrainCheck 310 provides data related to purity and color, it should be possible to measure the 

kernel vitreousness. 

 

The objective of this research was to develop neural-network models using kernel images to 

determine the vitreousness of durum wheat using the GrainCheck 310.    

 

Equipment and Procedures 

 

Equipment  

                                                 
1 Mention of a firm or a trade product does not imply endorsement or recommendation of the authors over other 
firms or products not mentioned. 
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The GrainCheck 310 consisted of a kernel feeder unit, a color imaging unit, a weighing and 

sorting unit, and a computer (Figure 1).  

 

Kernel feeder unit 

The kernel feeder unit delivered the kernels into the field of view of a CCD camera. Grain 

kernels were fed from the sample inlet onto a conveyor belt, which moved forward by steps, with 

grooves perpendicular to the moving direction. To prevent kernels from overlapping, the belt 

was vibrated so that the kernels were evenly distributed over the grooves. A control unit inside 

the kernel feeder controlled movement of the conveyer belt and sent the distance signal of belt 

movement to the computer to synchronize the camera operation so that all kernels in a sample 

were “seen” only once by the camera. For a good contrast between the kernels and the 

background, a blue belt was used.    

 

Color imaging unit 

A Sony color CCD camera (512×512) was mounted 19.05 cm above the conveyer belt. One pixel 

represented 0.0913 mm × 0.0869 mm on the real kernel. A frame grabber board was installed in 

a PC where the image taken by the camera was digitized and processed. The field of view of the 

camera covered 7 grooves on the belt. On average, 15 kernels were processed per image. A 

circular fluorescent lamp was used as the illumination source of the system. It had a 20.32 cm 

outside diameter and emits light within the full visible wavelength range. The CCD camera was 

situated at the center of this circular lamp.  

 

Personal Computer (PC)  
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A 100MHz Pentium PC with a frame grabber card was used to digitize the original image, 

conduct image segmentation and feature extraction, execute the classification algorithm based on 

the ANN, and serve as a user interface. 

 

Classification Algorithm 

Preprocessing 

Kernels were localized in the digitized image by scanning the whole image and color-

thresholding pixels against the blue background, i.e. the conveyor belt. When a non-blue pixel 

was found, its adjacent pixels were then examined. If an adjacent pixel was a non-blue pixel, it 

was considered a part of a kernel and its adjacent pixels were examined in the same way. When 

all pixels in the digitized image were examined, the size, the major axis, and the “center of 

gravity” of each kernel were determined. Each kernel was then placed in a segmented image with 

its major axis being horizontal and the “center of gravity” coinciding with the center of the 

segmented image. The width of the localized objects was used to find whether there were two or 

more kernels in a segmented image, as in cases where kernels were touching or overlapping. 

ANN    

A back-propagation network architecture was used since it is the most robust and common 

network. The number of inputs of the network was equal to the number of features used for 

classification, whereas the number of outputs was equal to the number of classes to be separated. 

In the back propagation algorithm, which was based on a gradient descent method, each node in 

a layer was connected to all nodes in the previous and the next layer with a weight. These 

weights defined the relationship between the image features and output classes. These weights 
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were adapted through calibration of the training data in a step-wise manner by repeatedly 

presenting the data to ANN for a number of epochs so as to minimize the classification errors. 

Once the weights were determined, the ANN could be used to categorize samples that were not 

included in the calibration process.   

 

Color images were transformed to the Hue, Saturation and Intensity (HSI) color space. To reduce 

the ANN inputs, four features extracted from each row and each column were projected onto an 

input vector x. The features extracted from image row i were calculated using Equations (1)-(4):  
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The features extracted from image column j were projected onto the input vector x using 

Equations (5) – (8): 
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where 

H(i, j), S(i, j) and I(i, j) – hue, saturation, and intensity of the pixel in row i, column  j, 

Nr – number of rows in the image, 

Nc – number of columns in the image, 

i – pixel row number, and 

j – pixel column number. 

 

Each segmented kernel image was placed in the center of a window of 70 rows by 200 columns 

in order to make all the images have the same size. Because each row or each column was 

projected onto the input vector x as four nodes, the total number of input nodes in the vector was 

4(Nr+Nc) = 1080. These input nodes represented the extracted features for a single kernel image. 

The value of each ANN output node represented the predicted probability that a kernel belongs 

to a specific output class. The kernel was assigned to the output class that had the highest 

predicted probability. 

 

Experimental Design 

Four sets of experiments were conducted to develop prediction models for wheat vitreousness 

using the GrainCheck 310. The first experiment was intended to select the most effective ANN 

model with respect to number of output classes, number of hidden layer nodes, and number of 

training epochs. The second experiment was designed to test the sensitivity of the calibration 

model to individual sample classes. The third experiment was an instrument-consistency test, 
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with the objective of testing model exchangeability between two GrainCheck 310 machines. 

Finally, field samples were tested to evaluate performance of the selected ANN model.  

 

Sample preparation 

The Grain Inspection, Packers, and Stockyards Administration (GIPSA) of USDA provided three 

sets of test samples for this study. Sample set 1 was used to develop the calibration and 

prediction model for vitreousness of durum wheat. The samples were classified as “hard vitreous 

and of amber color” (HVAC) or “not hard vitreous and of amber color” (NHVAC) by visual 

inspection of the Board of Appeals and Review (BAR). Three subclasses for HVAC and six 

subclasses for NHVAC kernels are defined in Table 1. Figure 2 shows examples of kernel 

images.  

 

Sample set 1 included 100g samples for each subclass. During the tests, each subclass was 

evenly divided into two sets, a calibration set and a validation set. Hence, the validation set came 

from the same lot as the calibration samples. The calibration set was used to calibrate the ANN 

prediction model, whereas the validation set was used to test the model performance. 

 

Sample set 2 was used to assess repeatability of the calibration models on different GrainCheck 

310 machines. There were 25 samples in this set. The percentage of HVAC in each sample was 

determined by the BAR.  

 

Sample set 3 included 143 Durum wheat samples from Brian Sorensen, North Dakota State 

University. All samples weighed 100 g. The percentage of HVAC was determined by the BAR 
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and by inspectors in North Dakota. This set was used to test the performance of the calibration 

model using an independent set of samples. 

 

ANN model selection test 

Three sets of calibration models were developed. This included an 11-class model, two 3-class 

models, and three 2-class models. Several sub-sample sets with different combinations of HVAC 

and NHVAC subclasses were generated to develop different calibration models. The 

classification rates (Equation 1) from different models were evaluated and compared. 

Number of kernels classified to Class A   
Classification rate of Class A =   (1)  
          Total number of Class A kernels 
 
 

1. 11-class model 

The 11-class model was developed to classify kernels into 11 kernel classes, (Table 1), 

including the nine subclasses defined by BAR, a “Clip” subclass, and an “Unknown” 

subclass. The Clip subclass (Figure 2) included images that were clipped during 

segmentation and images of kernels that were not totally in the field of view. Images 

containing multiple kernels were classified into the Unknown subclass.  

 

2. 3-class model 

Two 3-class models were tested. 

a. 3-class model with an Unknown class (Model 3a) 

To develop this model, all HVAC subclasses were combined into one class of HVAC 

(3864 images), while all NHVAC subclasses were combined into one class of NHVAC 
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(8494 images). The third class (“Unknown”) combined the Clip and Unknown subclasses 

(1056 images).  

b. 3-class model with a mottled class (Model 3b) 

Mottling was a small, nonvitreous area in a kernel (Figure 2). Thus, mottled kernels 

should be considered nonvitreous. However, for most mottled kernels, mottling occurs 

only on a portion of the kernel and other areas on the same kernel might appear to be 

vitreous. On the GrainCheck 310 machine, due to the random orientation of the kernels 

on the conveyer belt, mottled areas might not always be exposed to the field of view of 

the camera. As a result, a considerable number of mottled kernels could be misclassified 

as vitreous kernels. To derive a possible solution to correct this misclassification, model 

3b was established using three classes - HVAC, NHVAC, and Mottled. In order to 

balance the number of samples for vitreous and nonvitreous classes, 3600, 3000, and 600 

kernels were randomly selected for the HVAC and NHVAC, and Mottled classes, 

respectively.  

 

3. 2-class models 

To construct a simple calibration model, three 2-class models were tested. These models 

classified kernel images as either HVAC or NHVAC. The difference among these models 

was the number of samples of each class used in training.  

 

The first 2-class model (Model 2a) was developed using the entire original calibration image 

sets for HVAC and NHVAC. The sample size of NHVAC (8494 images) is about twice that 

of the HVAC (3864 images). The second 2-class model (Model 2b) used identical sample 
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sizes (1900 images) for HVAC and NHVAC. These images were randomly selected from the 

original calibration image sets.  

 

Considering the fact that most field samples contained mostly HVAC-01 and NHVAC-01 

kernels, subclasses used for the third 2-class model (Model 2c) were weighted as described in 

Table 2. The total numbers for the HVAC and NHVAC classes (1500 images each) were 

balanced for this model. 

 

Sensitivity test 

The objective of this test was to study sensitivities of the classification model to individual 

subclasses. After this study, the subclasses to which the models are least sensitive may possibly 

be eliminated from the calibration set. Sample set 1 was used in this test. During the tests, 

subclasses in the calibration image set were removed one at a time to generate different models. 

These models were then tested using the verification sample set.  

 

Instrument consistency test 

The objective of the instrument-consistency test was to examine the exchangeability of the 

model across two GrainCheck 310 instruments in the laboratory. Sample set 2 was used for these 

tests. The model used was Model 2b with 50 nodes and 100 epochs. Results from the two 

machines were compared. These results were also compared with BAR inspection and re-

inspection results. 

 

Field Tests 
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Sample set 3 was used for field tests. The percentage of HVAC kernels in a sample was 

evaluated using two GrainCheck310’s independently. Results from the two machines were 

compared to each other. These results were also compared with BAR results and with 

inspections obtained from the field.        

 

Results and Discussion 

 

ANN model selection test 

1. 11-class model 

The calibration results of the 11-class model with different numbers of hidden layer nodes 

shows that a larger number of hidden-layer nodes yielded faster model convergence. Table 3 

shows results from the tests using the validation data set. The model with 10 epochs and 200 

nodes had the highest classification rates of 87.0% and 88.8% for HVAC and NHVAC, 

respectively. However, differences in classification rates among models with different 

numbers of hidden layer nodes and different number of epochs were in general not 

significant. 

 

2. 3-class model 

a. 3-class model with the Unknown class (Model 3a) 

Calibration results show that the best 3a model was with 100 nodes and 100 epochs, 

which produced classification rates of greater than 98.0% for all three classes (Figure 3). 

Verification results show that the best 3a model was with 100 nodes and 70 epochs, 

which produced classification rates of 90.1%, 85.0%, and 55.8% for HVAC, NHVAC, 
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and Unknown, respectively. The Unknown class included all clipped images and 

unknown images, which were very difficult to identify as one class with the ANN. 

Inclusion of the “unknown” class might also have reduced the classification rates of the 

other two classes. Therefore, the Unknown class was removed from other classification 

models. 

b. 3-class model with the Mottled class (Model 3b) 

For calibration, classification rates were over 96% for all 3 classes with 50 and 100 

hidden layer nodes when the number of epochs was larger than 100 (Figure 4). The 

verification results show that the best 3b model was with 50 nodes and 120 epochs, which 

produced classification rates of 88.7%, 86.5%, and 73.3% for HVAC, NHVAC, and 

Mottled, respectively. Among the mottled kernels, 17.7% were misclassified as HVAC 

and 9% as NHVAC.   

 

A visual examination of the mottled kernels randomly selected from the calibration set 

showed that about 22% of the mottled kernels were not positioned with the mottling 

facing the camera. This percentage was similar to the percentage of the mottled kernels 

misclassified as HVAC (17.7%) derived in the verification test. If we assume that this 

misclassification was mainly due to kernel orientation, a correction can be made by 

adding 17.7% to the number of kernels classified as Mottled. Applying this correction to 

the results of the verification test, the classification accuracy for the Mottled class can be 

improved to 91.0%. Furthermore, if the NHVAC and Mottled classes were combined into 

one class, the classification rate for the NHVAC class would be improved to 89.4% with 

the correction (Table 4). 
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3. 2-class Model 

Different combinations of number of epochs and number of hidden layer nodes were tested for 

Model 2a, 2b, and 2c. For Model 2a, the best results were achieved with 100 hidden layer nodes 

and 100 epochs (data not shown). Classification results for the validation data set were 81.9% 

and 91.5% for HVAC and NHVAC (Table 4), respectively. The NHVAC class has a larger 

sample size than the HVAC class, which might have given a slight advantage to the NHVAC 

class. 

 

For Model 2b, the best results were achieved with 50 nodes and 100 epochs (data not shown). 

For the validation data set, classification rates were 84.9% and 90.5% for HVAC and NHVAC, 

respectively (Table 4). Figure 5 shows the classification rate for each subclass. HVAC-01 and 

NHVAC-01 had higher classification rates (around 90%) than most other subclasses, except 

NHVAC-05 and NHVAC-06.  

 

For Model 2c, the best results were achieved with 50 hidden layer nodes and 100 epochs (data 

not shown). For the validation data set, the classification rates were improved to 87.6% and 

91.6% for HVAC and NHVAC, respectively (Table 5).  

 

For commercial grain grading, it is often important to identify different grain-damage types, such 

as bleached, mottled/chalky, and sprouted kernels. The classification rate of each individual 

subclass should, therefore, be considered when evaluating calibration models. Based on USDA 

GIPSA recommendations, the subclasses HVAC-02 (Bleached HVAC Durum kernels), 

NHVAC-02 (Bleached NHVAC kernels), NHVAC-03 (Mottled/Chalky Durum kernels 
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inspected as NHVAC), and NHVAC-04 (Sprouted Durum kernels inspected as NHVAC) should 

have classification rates of greater than 85%. Model 2a approached this accuracy for the four 

subclasses, but had low HVAC accuracy (81.9%). Several models exceeds 85% average 

accuracy for HVAC and NHVAC, but none exceeded 85% accuracy for HVAC-02, NHVAC-02, 

NHVAC-03, and NHVAC-04 while maintained 85% or greater average HVAC and NHVAC 

accuracy.  

 

Sensitivity test 

The sensitivity analysis showed that the classification accuracy always decreased when a 

subclass was removed from the calibration model. Thus there was no subclass that was confusing 

the calibration model and all subclasses should be included in calibration. 

 

Instrument consistency test 

Model 2b was used to test sample set 2 for consistency across two GrainCheck 310 machines, 

GC310(1) and GC310(2). The results showed the percentages of HVAC kernels in a sample, 

which were compared with BAR results (Figure 6). The average error was calculated by 

averaging the differences between results from each GrainCheck 310 machines and BAR results. 

The GC310’s consistently underpredicted the BAR values by 12 – 15%. The average difference 

between the two GC310’s was 1.54% (R2 = 0.89), whereas the average difference between the 

original BAR inspection and the BAR re-inspection was 2.24% (R2 = 0.85) (Figure 7). Thus, the 

consistency between the two GrainCheck 310 instruments was slightly better than between BAR 

inspections. 
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Field sample tests 

In this test, Model 2b was verified using sample set 3. Results from the two GrainCheck 310’s 

showed a high degree of consistency, with an average difference of 0.8% between results from 

the two machines and an R2 of 0.81. However, both GrainCheck 310’s underpredicted the BAR 

results by 15% to 16%, (R2 = 0.63 to 0.69). One possible reason for this underprediction might 

be the difference in quality between the samples used to train the ANN model and the field 

samples used in verification. For example, the HVAC training samples used to develop Model 2b 

were vitreous wheat kernels with high quality in color, roundness and shape. In contrast, HVAC 

field samples included many aged, dry HVAC kernels. This may have confused the ANN during 

classification. To improve the accuracy of HVAC classification, training samples at different 

quality levels should be included.         

 

The results of two GrainCheck 310 machines were also compared with the results of two manual 

inspections – the BAR inspection and an inspection provided by wheat-quality extension 

specialists at the Department of Cereal and Food Sciences at North Dakota State University. The 

average difference between the two manual inspections was 1.8% (R2 = 0.75), whereas the 

average difference between the two machines was 0.8% (R2 = 0.81). Thus, the machines tend to 

be more consistent than human inspectors.            

 

Summary and Conclusions 

 
1. An image–based grain-grading system that used a neural network classifier was used to 

classify durum wheat vitreousness.  
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2. Several ANN calibration models with various combinations of number of classes, number of 

hidden layer nodes, and number of training epochs were developed and evaluated. Samples 

of three subclasses of HVAC and six subclasses of NHVAC were used for model calibration 

and validation. Several models approached 85-90% correct classification for average HVAC 

and NHVAC. However, none of the models reached the correct classification rate of 85% 

(GIPSA criteria) for bleached, mottled, and sprout kernels. 

3. A 3-class model, which included a Mottled class, was evaluated in order to minimize the 

effect of kernel orientation on classification. A correction method was developed to improve 

the classification rates. With this correction, the classification accuracies for the Mottled 

class and the overall NHVAC class were improved to 91.0% and 89.4%, respectively.  

4. A sensitivity test proved that all subclasses of HVAC and NHVAC were significantly 

affecting the overall classification accuracy and none of the subclasses should be removed 

from the calibration sample set.  

5. A 2-class calibration model was examined on two GrainCheck 310 machines to examine the 

transferability of the model across machines. The average classification error between the 

two 310 machines was 1.5% (R2 = 0.9). 

6. Field samples were examined by two GrainCheck 310 machines and two human inspectors. 

To improve classification accuracy of the GrainCheck 310’s, samples at different quality 

levels and with different ages should be used in training. Cross-examination also indicated 

that the machines tend to be more consistent than human inspectors.     

7. No single model provided best for all subclasses. The 2-class models may be preferred for 

simplicity of calibration, but additional input from GIPSA and industry is needed to 

determine which model may be the best for future testing. 
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Table 1 Durum wheat subclass and sample definitions 

 

No Sample 

Identifier 

Description Sample  

Size 

1 HVAC-01 Clean Durum kernels inspected as HVAC1 1384 

2 HVAC-02 Bleached Durum kernels inspected as HVAC 1256 

3 HVAC-03 Cracked or checked Durum kernels inspected 

as HVAC 

1224 

4 NHVAC-01 Clean Durum kernels inspected as NHVAC2 1630 

5 NHVAC-02 Bleached Durum kernels inspected as NHVAC 873 

6 NHVAC-03 Mottled/chalky Durum kernels inspected as 

NHVAC 

1084 

7 NHVAC-04 Sprouted Durum kernels inspected as NHVAC 1434 

8 NHVAC-05 Foreign materials 1914 

9 NHVAC-06 All other classes of wheat 1559 

10 Clip Clipped images of kernels 534 

11 Unknown Unknown classes 522 

 

 1 Hard vitreous and of amber color 

 2 Not hard vitreous and of amber color 
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  Table 2. Kernel classes used for the 2-class model with weighted sample size 

Class Sample Identifier Weight of sample size Sample size 

HVAC HVAC-01 80% 1200 

HVAC HVAC-02 10% 150 

HVAC HVAC-03 10% 150 

NHVAC NHVAC-01 80% 1200 

NHVAC NHVAC-02 4% 60 

NHVAC NHVAC-03 4% 60 

NHVAC NHVAC-04 4% 60 

NHVAC NHVAC-05 4% 60 

NHVAC NHVAC-06 4% 60 

 

Table 3. Validation results of classification rates (%) for the 11-class model 

Number of nodes 10 100 200 300 450
25 HVAC 85.6 83.2 83.1 82.3 N/A

NHVAC 88.0 87.8 86.2 87.2 N/A
50 HVAC 80.5 83.8 84.8 83.7 82.8

NHVAC 89.5 87.7 87.6 87.5 87.7
100 HVAC 83.9 85.8 85.3 85.0 85.4

NHVAC 89.4 88.1 88.4 88.4 88.2
200 HVAC 87.0 85.1 85.9 85.7 N/A

NHVAC 88.8 88.4 88.5 88.7 N/A
300 HVAC 83.9 86.7 86.7 86.0 86.2

NHVAC 90.0 88.4 88.6 89.1 83.7

Number of epochs
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Table 4. Accuracy of predicting vitreousness of durum wheat 

using various neural network models 

Classes HVAC NHVAC HVAC HVAC HVAC NHVAC NHVAC NHVAC NHVAC NHVAC NHVAC 

 Average Average 01 02 03 01 02 03 04 05 06 

11 Class1 87.0 88.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

3a Class2 90.1 85.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

3b Class3 88.7 86.5 93.6 90.4 82.3 85.1 75.4 82.3 85.2 92.9 97.9 

3c Class4 88.7 89.4 93.6 90.4 82.3 85.1 75.4 100.0 85.2 92.9 97.9 

2a Class5 81.9 91.5 90.9 82.9 71.9 88.6 82.0 86.3 95.0 98.3 98.7 

2b Class6 84.9 90.5 90.9 88.1 70.4 89.8 77.6 83.0 89.6 96.6 98.3 

2c Class7 87.6 91.6 95.4 86.1 66.7 88.8 79.5 76.3 74.7 88.6 95.3 

Note: 

1The 11 classes include all HVAC and NHVAC subclasses, plus clipped and unknown images 

2HVAC, NHVAC, and Unknown classes 

3HVAC, NHVAC, and Mottled classes 

4HVAC, NHVAC, and Mottled classes, with correction for mottling 

5HVAC and NHVAC classes. Unequal sample sizes 

6HVAC and NHVAC. Equal sample sizes 

7HVAC and NHVAC classes. Weighted sample sizes 

N/A: The 11-class model and Model 3a were only tested for HVAC and NHVAC. Data for individual subclasses 

was not available.  
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Figure 1. System Configuration 

 

Figure 2 Kernel images for (a) HVAC01, (b) NHVAC01, (c) Mottled, and (d) Clip 

 

Figure 3. Calibration and validation results for the 3-class model (a) Calibration result of 

3-class model with 100 hidden layer nodes (b) Validation result of 3-class model with 100 

hidden layer nodes 
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Figure 4. Calibration results for the 3-class model with Mottled class 

 and with 50 hidden layer nodes 
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Figure 5 Classification rate of each subclass using Model 2b with 100 nodes and 50 epochs 
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Figure 6. Comparison of results obtained from two GrainCheck  

310’s and from the BAR examinations, using sample set 2 
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Figure 7. Comparison of results obtained two BAR examinations 
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